यदि रैखिक समीकरण निकाय $ x-2 y+z=-4 $; $ 2 x+\alpha y+3 z=5 $; $ 3 x-y+\beta z=3$ के अनंत हल हैं, तो $12 \alpha+13 \beta$ बराबर है

  • [JEE MAIN 2024]
  • A

    $60$

  • B

    $64$

  • C

    $54$

  • D

    $58$

Similar Questions

$\left| {\,\begin{array}{*{20}{c}}1&a&{{a^2} - bc}\\1&b&{{b^2} - ac}\\1&c&{{c^2} - ab}\end{array}\,} \right| = $

  • [IIT 1988]

$a$ का वह मान जिसके लिये समीकरण निकाय ${a^3}x + {(a + 1)^3}y + {(a + 2)^3}z = 0,$ $ax + (a + 1)y + (a + 2)z = 0,$ $x + y + z = 0$  का एक अशून्य हल है     

यदि $a \ne b \ne c,$ तो  $x$  का वह मान, जो समीकरण $\left| {\,\begin{array}{*{20}{c}}0&{x - a}&{x - b}\\{x + a}&0&{x - c}\\{x + b}&{x + c}&0\end{array}\,} \right| = 0$ को संतुष्ट करता है, है

यदि ${a_1},{a_2},{a_3}.....{a_n}....$ गुणोत्तर श्रेणी में हैं, तब सारणिक $\left| {\,\begin{array}{*{20}{c}}{\log {a_n}}&{\log {a_{n + 1}}}&{\log {a_{n + 2}}}\\{\log {a_{n + 3}}}&{\log {a_{n + 4}}}&{\log {a_{n + 5}}}\\{\log {a_{n + 6}}}&{\log {a_{n + 7}}}&{\log {a_{n + 8}}}\end{array}\,} \right|$ का मान होगा

  • [AIEEE 2004]

यदि समीकरणों के निकाय $\begin{array}{l}\alpha x + y + z = \alpha  - 1\\x + \alpha y + z = \alpha  - 1\\x + y + \alpha z = \alpha  - 1\end{array}$ का कोई हल नहीं है, तब $\alpha $ का मान है

  • [AIEEE 2005]